Chapter 1

The Eclipse ICE Developer
Menu

Overview

The Eclipse Integrated Computational Environment (ICE) has had a great track
record of providing a comprehensive environment for general scientific comput-
ing. Tasks such as model input generation, local and remote simulation ex-
ecution, and post-simulation data analysis and visualization are all very well
supported in the application. These tasks take care of the majority of needs
for using general scientific computing codes, but what about developing those
applications to begin with? Is there any way ICE can be extended to provide
support for the development of science codes?

@ Eclipse File Edit Refactor Navigate Search Project Run Window Help

Figure 1.1: The ICE Developer Menu

The answer is yes! In 2015 ICE was extended to provide support for scien-
tific application development through a custom, extensible Developer top-level
menu. This menu is shown in Figure and provides custom actions that en-
able efficient scientific application development for both novice and expert users
of a given science code.

The Developer Menu is completely customizable through Eclipse Extension
Points. Specifically, ICE exposes a new extension point: org.eclipse.ice.developer.code.
This extension point provides the means to specify details about a scientific code:
its name, category (Framework, Nuclear, Other, etc...), and where its reposi-
tory is hosted, just to name a few. This point also enables the addition of com-
mands that point to some custom subclass of org.eclipse.core.commands. AbstractHandler
that performs some task related to the development of the code.

With these extensions exposed as part of an ICE product execution, ICE
handles all the complexity of picking them up and populating the Developer

Menu dynamically at runtime. This feature is shown in Figure [1.2] with an
ICE category for ICE development, and another for scientific frameworks. This
process is exactly how ICE developers work on ICE itself - by pulling down
the ICE binary and leveraging the Developer Menu to clone and build ICE, all
within ICE. ICE also provides these hooks for other scientific codes, like the
Multiphysics Object Oriented Simulation Environment (MOOSE) for general
finite-element simulations. ICE provides a hook for cloning MOOSE and for
forking a templated repository for MOOSE Application development.

Run Window Help st QREYGELETE Run Window Help
Clone ICE
Framework > Build ICE Fork the Stork
~ ICE Tests » Clone MOOSE

SR =y

Figure 1.2: The Developer Menu ICE and MOOSE Actions

Extending the Developer Menu is easy, and relies on simply creating a new
plugin and exposing a new extension. Let’s see how to do this task in detail:

Extending the ICE Developer Menu

For this tutorial, we are going to create a hook into the Developer menu to
clone a scientific code called Fern. Fern is an application that provides an
efficient nuclear reaction network solver. It is hosted at https://github.com/
jayjaybillings/fern.

To get started, we need to download the ICE plugins to our workspace,
which we can actually do through the Developer menu (pretty cool to use the
Developer menu to extend the Developer menu!). Click Developer > ICE >
Clone ICE to get all of ICE’s plugins into the workspace. With ICE cloned to
the workspace, we can now begin to extend the Developer menu. First, we will
need to create a new plugin.

Create a New Plugin Project

Creating a new plugin for an extension to the ICE Developer menu is simple,
just click File > New > Plugin Project (or Other, then select Plugin Project).
When the wizard opens, name your new plugin with something similar to Figure
and deselect the Generate an activation button. On the next page, simply
uncheck the create a plugin from template button and click Finish.

When the MANIFEST.MF file editor opens up, add the org.eclipse.ice.developer
plugin as a Required Plugin on the Dependencies tab.

Create a New ICE Developer Extension

Now let’s create a new Extension to connect ICE and the Developer Menu
with a Clone Fern action. To do so, go to the Extensions tab of the plugin

https://github.com/jayjaybillings/fern
https://github.com/jayjaybillings/fern

Content

New Plug-in Project

Enter the data required to generate the plug-in.

Properties.

Templates

New Plug-in Project

"I Create a plug-in using one of the templates

—

ID: com.mycompany.fern.developer

Available Templates:

Version: 100
Name: Developer
Vendor: MYGOMPANY B
Execution Environment: | JavaSE-1.8 B | Environments.
Options
| Generate an activator, a Java class that controls the plug-in's life cycle
Activator:
This plug-in will make contributions to the Ul
" Enable API analysis
Rich Client Application
Would you like to create a rich client application? Yes @ nNo
B
@ < Back Next cnce | EEEE | @ < Back cancol (MEIEIND

Figure 1.3: Creating a new Plugin Project

MANIFEST file and click add. ICE provides an org.eclipse.ice.developer.code
extension point that lets users define various details about their codes.

You will then be presented with the view in Figure Enter a descriptive
ID and Name for this extension and click Save.

To define your scientific application, right click on the org.eclipse.ice.developer.code
extension in the All Extensions section and select New > Code in the context
menu. This action will present you with the view in Figure where you can
select the code category, code display name, the repository URL, and the branch
you would like to work with.

To create a new developer action for your code, right click the code element
of the extension tree and select New > Command. You will then be presented
with the view at the top of Figure where you can input the name of this
action and the AbstractHandler subclass that performs the action. ICE provides
a default GitCloneHandler that you may select. For this tutorial, select that
and click Save. You should now have a view similar to the bottom of Figure
Lol

Setup ICE to Run with the New Plugin

To see this new Developer command in action, we need to launch a new instance
of ICE. This can be done by opening the Run Configurations Wizard in Run >
Run Configurations. Under the Eclipse Applications element in the tree on the
left, select the ICE launch configuration for your OS. Open the Plugins tab and
add your new developer plugin (see Figure by enabling it. Then, click Run
to launch ICE with your developer plugin. With ICE running, navigate to the

1} ~com.mycompany.fern.developer 2 = Tl

%= Extensions (v RN
All Extensions It = Extension Details
z
Define extensians for this plug-in in the following section. Set the properties of the selested extension. Required fislds are denated by ***.
D: com.mycompany.fern
<= org.eclipse.ice.developer.code Add Name: | Fern|
Remove

{= Show extension point description
<)/ Open extension point schema
% Find declaring extension point

Overview Dependencies | Runtime | Extensions | Extension Points | Build | MANIFEST.MF | build.properties | plugin.xmi

Figure 1.4: Configure the ID and Name of this Code Extension.

Developer menu and select Nuclear > Fern > Clone Fern (see Figure [1.7)).
This will kick off the action you specified to clone the Fern repository and
pull in any Eclipse projects to the workspace, as shown in Figure

{2} com.mycompany.fern.developer 52

% Extensions

All Extensions. 12 B Extension Element Details

Define extensions for this plug-in in the following section. Set the properties of ‘code’ Required fields are denoted by ™',

codeCategory: | Nuclear
¥ o=org.eclipse.ice.developer.code Add. codeName*: Fern
%] (code)
— repoURL: https://github.com/jayjaybillings/fern
branch: master

=M u]

O%%®

Gvuviuw|[)sp-ndsnclm|ﬁuntima Extensions | Extensien Points

auuu| MANIFESTMF hulld‘pmpsrhns‘ plunm.nml|
it com.mycompany.fern.developer 52

% Extensions

All Extensions. 12 B Extension Element Details

Define extensions for this plug-in in the following section. Set the properties of ‘command’ Required fields are denoted by '*'.
commandName®: | Clone Fern

¥ 4= org.eclipse.ice.developer.code = I d tions. GitCloneHan

v [4] (code)
%] (command) Remove

=l

O%%O

Browse...

e Extensions | Extension Points

Overview ‘ Dependencies |Hun|i

Eulld| MF ‘ build,

Figure 1.5: Create a new Code description for this extension.

Create, manage, and run configurations

Run Configurations

Create a configuration to launch an Eclipse application.

w

dd
5

=R

o]

E C/C++ Application
C{i C/C++ Unit
[=ASE Script

¥ & Eclipse Application

Name: | jce.macosx_product

Conﬁguratiﬂn] Tra::lng] ”2

=] Main [(9= Arguments M

Launch with: plug-ins selected below only

~
-

Default Start level: 4

type filter text

elee.ms.cnsx_pruuuc{ Plug-ins Start Level
S ice.materials.product_linux - 0l‘”’""""l’i":ﬁ
£ ice.product linux <= com.mycompany.fern.developer (1.0.0) 1] z
| 2 ice.product WINDOWS o org.eclipse.eavp.viz {2.1.8.20160208) default
It e\ﬁsua\izationRCPApp <= org.eclipse.eavp.viz.service (2.1.8.20160208) default
1 E Fertran Local Application <= org.eclipse. eavp.viz.service.geometry (2.1.8.20160208) default
4 Java Applet ()] <= org.eclipse.eavp.viz.service.geometry.test (2.1.6.20160208)
I3 Java Application <= org.eclipse.eavp.viz.service. javafx (2.1.8.20180208) default
Ju JUnit «J=org. eclipse.eavp.viz.service javafx.geometry (2.1.6.20160208) default
J4U> JUnit Plug-in Test [m] == org.eclipse.eavp.viz.service. javaf.geometry test (2.1.8.20160208)
B Launch Group = org.eclipse. eavp.viz.service. javafx.mesh {2.1.8.20160208) default
- m2 Maven Build Include optional dependencies when computing required plug-ins
Mobile Simulator — . ~ X
D Mwe2 Launch |_| Add new workspace plug-ins to this launch cenfiguration automatically
» 4% 0SGi Framework o
53 Parallel Application Validate plug-ins automatically prier te launching
f}; Ruby Script
@ Ruby Test
ot = = Revert Apply
Filter matched 39 of 39 items

®

Figure 1.6: Add your plugin to the run configuration.

Run Window

Help

[Project Explorer &%

ICE : k

» (= edu.utk.phys.fern
v [(Sfern

Framework
Muclear >

Clone Fern 1| » Gl Includes

Figure 1.7:

> (B sro

» = data

» (=tools

> = tpls
CMakelLists.txt
LICENSE.txt
|2 Makefile.cpu
|2 Makefile.gpu
14 README.md

Use the Developer Menu to Clone ICE.

	The Eclipse ICE Developer Menu

