
The Eclipse ICE Developer Menu

Overview

The Eclipse Integrated Computational Environment (ICE) has had a great track
record of providing a comprehensive environment for general scientific comput-
ing. Tasks such as model input generation, local and remote simulation ex-
ecution, and post-simulation data analysis and visualization are all very well
supported in the application. These tasks take care of the majority of needs
for using general scientific computing codes, but what about developing those
applications to begin with? Is there any way ICE can be extended to provide
support for the development of science codes?

Figure 1: The ICE Developer Menu

The answer is yes! In 2015 ICE was extended to provide support for scien-
tific application development through a custom, extensible Developer top-level
menu. This menu is shown in Figure 1 and provides custom actions that enable
efficient scientific application development for both novice and expert users of
a given science code.

The Developer Menu is completely customizable through Eclipse Extension
Points. Specifically, ICE exposes a new extension point: org.eclipse.ice.developer.code.
This extension point provides the means to specify details about a scientific code:
its name, category (Framework, Nuclear, Other, etc. . . ), and where its reposi-
tory is hosted, just to name a few. This point also enables the addition of com-
mands that point to some custom subclass of org.eclipse.core.commands.AbstractHandler
that performs some task related to the development of the code.

With these extensions exposed as part of an ICE product execution, ICE
handles all the complexity of picking them up and populating the Developer
Menu dynamically at runtime. This feature is shown in Figure 2, with an
ICE category for ICE development, and another for scientific frameworks. This
process is exactly how ICE developers work on ICE itself - by pulling down
the ICE binary and leveraging the Developer Menu to clone and build ICE, all
within ICE. ICE also provides these hooks for other scientific codes, like the
Multiphysics Object Oriented Simulation Environment (MOOSE) for general
finite-element simulations. ICE provides a hook for cloning MOOSE and for
forking a templated repository for MOOSE Application development.

Figure 2: The Developer Menu ICE and MOOSE Actions

1



Extending the Developer Menu is easy, and relies on simply creating a new
plugin and exposing a new extension. Let’s see how to do this task in detail:

Extending the ICE Developer Menu

For this tutorial, we are going to create a hook into the Developer menu to
clone a scientific code called Fern. Fern is an application that provides an
efficient nuclear reaction network solver. It is hosted at https://github.com/
jayjaybillings/fern.

To get started, we need to download the ICE plugins to our workspace,
which we can actually do through the Developer menu (pretty cool to use the
Developer menu to extend the Developer menu!). Click Developer > ICE >
Clone ICE to get all of ICE’s plugins into the workspace. With ICE cloned to
the workspace, we can now begin to extend the Developer menu. First, we will
need to create a new plugin.

Create a New Plugin Project

Creating a new plugin for an extension to the ICE Developer menu is simple,
just click File > New > Plugin Project (or Other, then select Plugin Project).
When the wizard opens, name your new plugin with something similar to Figure
3 and deselect the Generate an activation button. On the next page, simply
uncheck the create a plugin from template button and click Finish.

Figure 3: Creating a new Plugin Project

When the MANIFEST.MF file editor opens up, add the org.eclipse.ice.developer
plugin as a Required Plugin on the Dependencies tab.

2

https://github.com/jayjaybillings/fern
https://github.com/jayjaybillings/fern


Create a New ICE Developer Extension

Now let’s create a new Extension to connect ICE and the Developer Menu
with a Clone Fern action. To do so, go to the Extensions tab of the plugin
MANIFEST file and click add. ICE provides an org.eclipse.ice.developer.code
extension point that lets users define various details about their codes.

You will then be presented with the view in Figure 4. Enter a descriptive
ID and Name for this extension and click Save.

Figure 4: Configure the ID and Name of this Code Extension.

To define your scientific application, right click on the org.eclipse.ice.developer.code
extension in the All Extensions section and select New > Code in the context
menu. This action will present you with the view in Figure 5 where you can se-
lect the code category, code display name, the repository URL, and the branch
you would like to work with.

To create a new developer action for your code, right click the code element of
the extension tree and select New > Command. You will then be presented with
the view at the top of Figure 5 where you can input the name of this action and
the AbstractHandler subclass that performs the action. ICE provides a default
GitCloneHandler that you may select. For this tutorial, select that and click
Save. You should now have a view similar to the bottom of Figure 5.

Setup ICE to Run with the New Plugin

To see this new Developer command in action, we need to launch a new instance
of ICE. This can be done by opening the Run Configurations Wizard in Run >
Run Configurations. Under the Eclipse Applications element in the tree on the
left, select the ICE launch configuration for your OS. Open the Plugins tab and
add your new developer plugin (see Figure 6) by enabling it. Then, click Run
to launch ICE with your developer plugin. With ICE running, navigate to the
Developer menu and select Nuclear > Fern > Clone Fern (see Figure 7).

3



Figure 5: Create a new Code description for this extension.

This will kick off the action you specified to clone the Fern repository and
pull in any Eclipse projects to the workspace, as shown in Figure

4



Figure 6: Add your plugin to the run configuration.

Figure 7: Use the Developer Menu to Clone ICE.

5


