
In addition to interacting with tools via the ICE user interface, ICE also
provides a scripting framework based on the Eclipse Advanced Scripting Envi-
ronment (EASE).

1 Installation and Configuration

Although EASE is pre-installed in the ICE application, there are a few ad-
ditional components that need to be installed in order to provide a Python
scripting engine.

1.1 EASE Jython Installation

The first step is to install the EASE Jython engine. This can be done via the
official EASE repository1 using the Eclipse Update Manager, but is more simply
achieved using the Install EASE Components menu.

To installed the Jython engine, select Help → Install EASE Components

from the ICE menu bar. Check the box next to the EASE Jython Integration
entry and click Finish. Follow the prompts to install the component, and restart
Eclipse when asked.

1https://dl.bintray.com/pontesegger/ease-jython

1

1.2 PyDev Installation (optional)

It is possible to edit Python scripts in Eclipse using the default text editor,
however it is much more productive to use the PyDev Eclipse development en-
vironment. In addition to the usual syntax coloring and other advanced editing
features you’d expect in Eclipse, PyDev also provides the ability to run and
debug Python programs from within the Eclipse environment.

PyDev can be easily installed from using the Eclipse Marketplace client as
follows. From the ICE menu bar, select Help → Eclipse Marketplace...,
type “pydev” in the Find field, then click the Go button. After a few seconds,
you should see an entry for PyDev. Simply click the Install button and follow
the prompts to install the feature. Once Eclipse has been restarted, any Python
scripts ending in “.py” will be recognized by PyDev and opened in the Python
editor by default.

2

1.3 EASE Configuration

By default, EASE is configured to use the javascript (Rhino) engine. Since
this tutorial assumes that the preferred environment is Python, we recommend
changing this default. This is done through the Scripting preferences.

To set the script engine default, select Window → Preferences... in the
ICE menu bar. (On Mac OS X, Preferences. . . is instead located under Eclipse
ICE in the menu bar.) Open the Scripting tree item on the left side of the
preferences window, then select Shell. Finally, select Python (Jython) from
the Preferred Engine: dropdown, then click on OK.

3

2 Creating and Running Scripts

There is nothing special about creating and running EASE scripts. They can be
created in a variety of ways using the development tools available in ICE, and
then run later when needed. For this tutorial, we will be creating the scripts
using PyDev (or any text editor) and running them directly using the Run As

→ EASE Script context menu.

EASE also provides a perspective for creating, managing, debugging, and
running scripts called the Scripting perspective. This perspective contains
views for running script commands interactively, and for exploring script mod-
ules. For additional information on the Scripting perspective and other EASE
features, see the EASE documentation2.

EASE hides many of the details that would normally be required to ma-
nipulate Java objects and perform actions in the Eclipse IDE. It does this by
encapsulating typical actions into simple script commands that can be easily in-
voked from scripts that you write. These commands are collected together into
“modules”. You can see which modules are available, and the commands that
they contain, using the Modules Explorer view. This view can be opened by
selecting Window → Show View → Other... to open the Show View dialog,

2http://eclipse.org/ease/documentation

4

as shown below.

Form this dialog, open the Scripting folder and select the Modules Explorer,
then click on OK. This will open the Modules Explorer view which can be used
to explore the modules and commands that are available for use in EASE scripts.

2.1 Creating a Python Script

The easiest way to create a Python script is to simply create a text file ending in
“.py” in an existing project. If your scripts will be used with stand-alone Python

5

programs, you can use PyDev to create a Python project, but in general, any
kind of project will suffice.

First, let’s create a project to hold the scripts. To do this, right click any-
where in the Project Explorer view and select New → Project... or click
on the New button in the toolbar. Once you do this, you should see the Select

a wizard dialog like the one shown below.

Open the General folder in the list of wizards, and select the Project wizard
as shown. Then click on the Next > button which should open the New Project

wizard. This is shown below.

6

Enter a name for the project in the Project name: field and then click the
Finish button. You can leave all the other options set to their default values.

You should now see a folder with the name you specified appear in the
Project Explorer view. You can now create a Python file in this folder by
right clicking on the folder and selecting New → File from the context menu.
This will display the New File dialog as shown below.

7

At this point all that remains to be done is enter the name of the file in
the File name: field and click on the Finish button. This will create the file
and automatically open the PyDev editor (assuming you installed PyDev) or
a simple text editor. You should see an editor view something like that shown
below.

8

2.2 Writing a Python Script

For the purposes of this tutorial, we will just be using the Platform module.
In order to load a module, we use the loadModule() function in Python. The
argument to this function is a string representation of the module path, which
in this case will be /System/Platform.

Enter the following command as the first line of the script file:

loadModule("/System/Platform")

Once this module has been loaded, a number of additional functions become
available. We want to obtain a reference to the core ICE service, which is used
as the starting point for manipulating ICE models. This is done by adding the
following line:

coreService = getService(org.eclipse.ice.core.iCore.ICore)

Once a reference to the core services has been obtained, we can use this
to obtain a reference to the Reflectivity Model. This is done by adding the
following line:

reflectModel = coreService.getItem(int(coreService.

createItem("Reflectivity Model")))

Note that the createItem() method will return a string representing the
number of that item, so int() is used to convert it to an integer, which is the
argument expected by getItem().

9

In this example, we’re just going to accept the default inputs for the model,
so the only thing left to do it process the model. This is done using the core
service processItem() as follows:

res = coreService.processItem(reflectModel.getId(), "

Calculate Reflectivity", 1)

Finally, let’s print out the result of processing the model to see if it was
successful.

print "result was: %s" % res

Remember to save the editor using Ctrl/Cmd-S or the File → Save com-
mand from the ICE menu bar.

2.3 Running a Python Script

Once you have created Python script, is can be easily launched using the Run
As context menu. Simply right-click on the Python file, then select Run As

→ EASE Script. EASE will automatically recognize the file type and run the
script with the appropriate engine. Any (textual) output generated by the script
will be displayed in the Console view shown below3.

Re-running the script is simple as ICE has automatically added the most

recently executed run configuration to the run button. Just click on the
icon to re-run the last script. You can also click on the small triangle next to
the button to see a list of recent launches and re-run them if desired.

3 In this case the processItem() function returns InfoError because it hasn’t been cor-
rectly configured before the model was processed. We will see how to fix this later in the
tutorial.

10

3 Using the Sample Scripts

We have provided a number of sample scripts to show how ICE can be scripted
using EASE. These scripts are located in the org.eclipse.ice.examples.

reflectivity package that is already loaded in your workspace. The scripts
can also be obtained by cloning the ICE Git repository4, then manually import-
ing the org.eclipse.ice.examples.reflectivity package.

There are four sample scripts that demonstrate how a reflectivity model can
be created, configured and executed. The scripts are described in more detail
in the following sections.

3.1 createAndProcessPython.py

This is a simple script that demonstrates how to create a reflectivity model and
process the model to obtain a result. The default model inputs are used for the
computation.

**
Copyright (c) 2015 UT-Battelle, LLC.
All rights reserved. This program and the accompanying materials
are made available under the terms of the Eclipse Public License v1.0
which accompanies this distribution, and is available at
http://www.eclipse.org/legal/epl-v10.html
#
Contributors:
Initial API and implementation and/or initial documentation - Kasper
Gammeltoft.
#
This is an example script designed to show how to use ease with ICE. It
creates a new Reflectivity Model and processes it, using the default mock
data and inputs.
**

Load the Platform module for accessing OSGi services
loadModule(’/System/Platform’)

Get the core service from ICE for creating and accessing objects.
coreService = getService(org.eclipse.ice.core.iCore.ICore);

Create the reflectivity model to be used and get its reference. The create
item

method will return a string representing the number of that item, so use in
t() to

convert it to an integer.
reflectModel = coreService.getItem(int(coreService.createItem("Reflectivity M

odel")))

This is usually where you would do your own customization and automation re
garding

the reflectivity model you just created. Maybe change the layers, or do som
e custom

calculations.

4http://github.com/eclipse/ice.git

11

Finally process the model to get the results.
coreService.processItem(reflectModel.getId(), "Calculate Reflectivity", 1);

3.2 createAndEditPython.py

This script extends the createAndProcessPython.py script by editing the input
to the model programmatically. The model is then processed to obtain the
results.

**
Copyright (c) 2015 UT-Battelle, LLC.
All rights reserved. This program and the accompanying materials
are made available under the terms of the Eclipse Public License v1.0
which accompanies this distribution, and is available at
http://www.eclipse.org/legal/epl-v10.html
#
Contributors:
Initial API and implementation and/or initial documentation - Kasper
Gammeltoft.
#
This is an example script designed to show how to use ease with ICE. It
creates a new Reflectivity Model and processes it, but also edits the inpu

t
to the table beforehand.
**

Load the Platform module for accessing OSGi services
loadModule(’/System/Platform’)

Get the core service from ICE for creating and accessing objects.
coreService = getService(org.eclipse.ice.core.iCore.ICore);

Create the reflectivity model to be used and get its reference. The create
item

method will return a string representing the number of that item, so use in
t() to

convert it to an integer.
reflectModel = coreService.getItem(int(coreService.createItem("Reflectivity M

odel")))

Gets the list component used as the data for the table (is on tab 2)
listComp = reflectModel.getComponent(2)

Gets the third material and sets its thickness to 400
mat1 = listComp.get(2)
mat1.setProperty("Thickness (A)", 400)

Get the total thickness and set the second material’s thickness to depend
on the thicknesses of the other materials
totThickness = 0
for i in xrange(0, listComp.size() - 1):

if(i != 1):
totThickness += listComp.get(i).getProperty("Thickness (A)")

Set the thickness of the second material so that the total sums to 1000 (A)
listComp.get(1).setProperty("Thickness (A)", 1000-totThickness);

Finally process the model to get the results.
coreService.processItem(reflectModel.getId(), "Calculate Reflectivity", 1);

12

3.3 iterateChangeParameterPython.py

This script demonstrates how to create multiple reflectivity models with varying
input parameters. The models are created and processed sequentially.

**
Copyright (c) 2015 UT-Battelle, LLC.
All rights reserved. This program and the accompanying materials
are made available under the terms of the Eclipse Public License v1.0
which accompanies this distribution, and is available at
http://www.eclipse.org/legal/epl-v10.html
#
Contributors:
Initial API and implementation and/or initial documentation - Kasper
Gammeltoft.
#
This is an example script designed to show how to use ease with ICE. It
creates several new Reflectivity Models and changes the thickness paramete

r
to show the effect that creates.
**

Load the Platform module for accessing OSGi services
loadModule(’/System/Platform’)

Get the core service from ICE for creating and accessing objects.
coreService = getService(org.eclipse.ice.core.iCore.ICore);

Set a initial value for the thickness of the nickel layer. This will be dou
bled

for each iteration to show how this parameter effects the model
nickelThickness = 250;

for i in xrange(1, 5):
Create the reflectivity model to be used and get its reference. The cre

ate item
method will return a string representing the number of that item, so us

e int() to
convert it to an integer.
reflectModel = coreService.getItem(int(coreService.createItem("Reflectivi

ty Model")))

Get the nickel layer from the model. It should be in the list, which is
component 2,

and it is the third layer in that list (which is item 2 as the list is
zero based).

listComp = reflectModel.getComponent(2);
nickel = listComp.get(2);

nickel.setProperty("Thickness (A)", nickelThickness);

nickelThickness += 250;

Finally process the model to get the results.
coreService.processItem(reflectModel.getId(), "Calculate Reflectivity",

1);

3.4 listFromScratchPython.py

This script demonstrates how to create a reflectivity model and programmably
create and set up the layers in the model. The model is then process to obtain

13

the results.

**
Copyright (c) 2015 UT-Battelle, LLC.
All rights reserved. This program and the accompanying materials
are made available under the terms of the Eclipse Public License v1.0
which accompanies this distribution, and is available at
http://www.eclipse.org/legal/epl-v10.html
#
Contributors:
Initial API and implementation and/or initial documentation - Kasper
Gammeltoft.
#
This is an example script designed to show how to use ease with ICE. It
creates a new Reflectivity Model and shows how to customize and build up
the layers in the model from scratch.
**

Needed imports from ICE
from org.eclipse.ice.datastructures.form import Material

Load the Platform module for accessing OSGi services
loadModule(’/System/Platform’)

Get the core service from ICE for creating and accessing objects.
coreService = getService(org.eclipse.ice.core.iCore.ICore);

Create the reflectivity model to be used and get its reference. The create
item

method will return a string representing the number of that item, so use in
t() to

convert it to an integer.
reflectModel = coreService.getItem(int(coreService.createItem("Reflectivity M

odel")))

Gets the list component used as the data for the table (is on tab 2)
listComp = reflectModel.getComponent(2)

Now we want to build up the list from our own data, so we can do that here.

The first step would be to clear the list so that we can start adding to i
t. Clearing

the list requires the locks as multiple operations are happening and we nee
d to

protect the list from multiple threads trying to access it at the same tim
e.

listComp.getReadWriteLock().writeLock().lock()
listComp.clear()
listComp.getReadWriteLock().writeLock().unlock()

Create the layer of air
air = Material()
air.setName("Air")
air.setProperty("Material ID", 1)
air.setProperty("Thickness (A)", 200)
air.setProperty("Roughness (A)", 0)
air.setProperty(Material.SCAT_LENGTH_DENSITY, 0)
air.setProperty(Material.MASS_ABS_COHERENT, 0)
air.setProperty(Material.MASS_ABS_INCOHERENT, 0)

Create the Aluminum Oxide layer
AlOx = Material()
AlOx.setName("AlOx")
AlOx.setProperty("Material ID", 2)
AlOx.setProperty("Thickness (A)", 25)
AlOx.setProperty("Roughness (A)", 10.2)
AlOx.setProperty(Material.SCAT_LENGTH_DENSITY, 1.436e-6)
AlOx.setProperty(Material.MASS_ABS_COHERENT, 6.125 e-11)

14

AlOx.setProperty(Material.MASS_ABS_INCOHERENT, 4.47 e-12)

Create the Aluminum layer
Al = Material()
Al.setName("Al")
Al.setProperty("Material ID", 3)
Al.setProperty("Thickness (A)", 500)
Al.setProperty("Roughness (A)", 11.4)
Al.setProperty(Material.SCAT_LENGTH_DENSITY, 2.078e-6)
Al.setProperty(Material.MASS_ABS_COHERENT, 2.87 e-13)
Al.setProperty(Material.MASS_ABS_INCOHERENT, 1.83 e-12)

Create the Aluminum Silicate layer
AlSiOx = Material()
AlSiOx.setName("AlSiOx")
AlSiOx.setProperty("Material ID", 4)
AlSiOx.setProperty("Thickness (A)", 10)
AlSiOx.setProperty("Roughness (A)", 17.2)
AlSiOx.setProperty(Material.SCAT_LENGTH_DENSITY, 1.489 e-6)
AlSiOx.setProperty(Material.MASS_ABS_COHERENT, 8.609e-9)
AlSiOx.setProperty(Material.MASS_ABS_INCOHERENT, 6.307 e-10)

Create the Silicon layer
Si = Material()
Si.setName("Si")
Si.setProperty("Material ID", 5)
Si.setProperty("Thickness (A)", 100)
Si.setProperty("Roughness (A)", 17.5)
Si.setProperty(Material.SCAT_LENGTH_DENSITY, 2.07e-6)
Si.setProperty(Material.MASS_ABS_COHERENT, 4.7498 e-11)
Si.setProperty(Material.MASS_ABS_INCOHERENT, 1.9977 e-12)

Add all of the materials back to the list (in top to bottom order)
listComp.getReadWriteLock().writeLock().lock()
listComp.add(air);
listComp.add(AlOx);
listComp.add(Al);
listComp.add(AlSiOx);
listComp.add(Si);
listComp.getReadWriteLock().writeLock().unlock()

Finally process the model to get the results.
coreService.processItem(reflectModel.getId(), "Calculate Reflectivity", 1);

15

	Installation and Configuration
	EASE Jython Installation
	PyDev Installation (optional)
	EASE Configuration

	Creating and Running Scripts
	Creating a Python Script
	Running a Python Script

	Using the Sample Scripts
	Writing Python Scripts

