
The Eclipse ICE Item Project Generator

Overview

This tutorial will teach you how you can create your own ICE Items via the
built in tools within ICE. To demonstrate these tools, we will walk through the
development of an ICE Item project for the FERN code, a fast efficient nuclear
reaction network solver.

So we don’t have to worry about building Fern for this tutorial, we have
provided a convenient Docker image for Fern that you may use. This image
must be apart of your local docker daemon images list for use in this tutorial.
You can add the image to your local Docker daemon in 2 ways: build the image
with the provided Dockerfile, or load the image through the image tar ball we
have provided. To build it from scratch, in the same directory as the Dockerfile,
run

Listing 1: bash version

docker build -t eclipseice/fern .

To load the image from the provided tar ball, run

Listing 2: bash version

docker load < fernImage.tar.gz

After creating a new ICE Item plugin project, we will demonstrate how to
provide a few lines of code to get a Model Item showing in ICE that creates input
files for FERN. After that we will add a little code to the FERN JobLauncher
to be able to execute FERN locally, remotely, or via the provided Docker image.

Before we begin, make sure you have ICE cloned (Developer > ICE > Clone
ICE) into your workspace, and the provided Docker image loaded to your local
Docker daemon.

1



Creating a New ICE Item Plugin Project

To create a new ICE Item project, navigate to File > New > Other and
open the ICE Item Creation Wizards folder and select ICE Item Creation

Wizard. You will be met with a standard new project wizard page, in which
you can name your project. We will call ours org.eclipse.ice.fern. Once
you have named your project click the Next > button.

2



Now you are able to customize the plugin-specific portions of the project. We do
not need an Activator to be generated, so uncheck that box, then select Next.

On this page you simply need to tell the wizard what you want to use as a
base name for your item classes. We will call this one Fern. When you have
entered your base class name you can click the Finish button to generate your
new ICE Item plugin project.

When the project has finished generating you should be able to explore
the code that has been created. Within the source directory there will be two
packages, each containing two Java classes:

• org.eclipse.ice.fern.launcher

– FernLauncher.java

– FernLauncherBuilder.java

• org.eclipse.ice.fern.model

– FernModel.java

– FernModelBuilder.java

To add functionality to the project you will only be responsible for edit-
ing the Launcher and Model classes and can ignore the LauncherBuilder and
ModelBuilder classes.

3



Adding Functionality to the New Items

The Fern Model

The FernModel will be responsible for creating and validating input parameters
for FERN, in the form of a new FERN input file. In order to make the generated
code run there are several pieces of information that need to be changed. First,
we will need to set up the basic Item idenfification information. This information
is set in the setupItemInfo() method. Modify the writerName, readerName, and
outputName to match the following

writerName = "INIWriter";

readerName = "INIReader";

outputName = "fern_config.ini";

We also need to provide a name, description, and export action name. The
generator will provide some default strings for these, but you may modify it as
you see fit.

The name will serve as the display name for this Item, so set it as Fern

Model. As for the description, this will also be used on the UI for the Item,
so provide some text like the following: This Item constructs input files

for the FERN reaction network solver. The export string will serve as the
name of the action that the user can select to write the provided data to file.
Set it to something like: Export to INI. You should now have a method that
looks like this:

@Override

protected void setupItemInfo () {

setName("Fern Model");

setDescription("This Item constructs " +

"input files for the FERN reaction " +

"network solver");

writerName = "INIWriter";

readerName = "INIReader";

outputName = "fern_output.ini";

exportString = "Export to INI";

allowedActions.add(0, exportString );

}

The final line ensures that the export string is provided to ICE as an allowed
action, and displayed in the Item Process drop down.

With the identification information configured properly we can begin to im-
plement the Form for this Fern Model. This is done in the setupForm() method.
The generator has begun the process of implementing this method by instanti-

4



ating a Form for you to use, getting a reference to the IOService (which provides
IReader/IWriter realizations), and providing a commented out example of how
to fill out an ICE Form.

For this FERN input model, we want to add the following sections with
data entries: a network section with numSpecies, numReactions, numReaction-
Groups, massTol, fluxFrac, networkFile, rateFile data entries, and initialCon-
ditions with T9, startTime, endTime, initialTimeStep, and density. To achieve
this for this Item, we will need to add two DataComponents, one for the net-
work section and another for the initialConditions section. To each of those
DataComponents we will add appropriate IEntry instances for each of the data
entries we have.

Add the following to your setupForm() method:

// Create the network section

DataComponent networkComp = new DataComponent ();

networkComp.setName("network");

networkComp.setDescription("The parameters needed " +

"to describe the nuclear " +

"reaction network");

networkComp.setId (1);

// Create the IEntries we need for this DataComponent

StringEntry numSpecies = new StringEntry ();

numSpecies.setName("numSpecies");

numSpecies.setDescription("The number of species to consider");

numSpecies.setDefaultValue("16");

StringEntry numReactions = new StringEntry ();

numReactions.setName("numReactions");

numReactions.setDescription("The number of reactions to consider");

numReactions.setDefaultValue("48");

StringEntry numReactionGrps = new StringEntry ();

numReactionGrps.setName("numReactionsGroups");

numReactionGrps.setDescription("The number of reaction " +

"groups to consider");

numReactionGrps.setDefaultValue("19");

StringEntry massTol = new StringEntry ();

massTol.setName("massTol");

massTol.setDescription("The mass tolerance to consider");

massTol.setDefaultValue("1e-7");

5



StringEntry fluxFrac = new StringEntry ();

fluxFrac.setName("fluxFrac");

fluxFrac.setDescription("The flux fraction to consider");

fluxFrac.setDefaultValue(".01");

FileEntry networkFile = new FileEntry(".inp");

networkFile.setProject(project );

networkFile.setName("networkFile");

networkFile.setDescription("The network file for this problem");

FileEntry rateFile = new FileEntry(".data");

rateFile.setProject(project );

rateFile.setName("rateFile");

rateFile.setDescription("The rate file for this problem");

networkComp.addEntry(numSpecies );

networkComp.addEntry(numReactions );

networkComp.addEntry(numReactionGrps );

networkComp.addEntry(massTol );

networkComp.addEntry(fluxFrac );

networkComp.addEntry(networkFile );

networkComp.addEntry(rateFile );

// Create the initial conditions section

DataComponent initConditionsComp = new DataComponent ();

initConditionsComp.setName("Initial Conditions");

initConditionsComp.setId (2);

initConditionsComp.setDescription("The parameters " +

"needed to describe the initial " +

"conditions for the problem");

StringEntry t9 = new StringEntry ();

t9.setName("T9");

t9.setDescription("The temperature in Kelvin x 10^9");

t9.setDefaultValue("7.0");

StringEntry startTime = new StringEntry ();

startTime.setName("startTime");

startTime.setDescription("The start time for the simulation.");

startTime.setDefaultValue("1e-20");

StringEntry endTime = new StringEntry ();

endTime.setName("endTime");

endTime.setDescription("The end time for the simulation");

endTime.setDefaultValue("1e-3");

6



StringEntry initialTimeStep = new StringEntry ();

initialTimeStep.setName("initialTimeStep");

initialTimeStep.setDescription("The initial time step " +

"for the simulation.");

initialTimeStep.setDefaultValue("1.2345e-22");

StringEntry density = new StringEntry ();

density.setName("density");

density.setDescription("The initial density.");

density.setDefaultValue("1e8");

initConditionsComp.addEntry(t9);

initConditionsComp.addEntry(startTime );

initConditionsComp.addEntry(endTime );

initConditionsComp.addEntry(initialTimeStep );

initConditionsComp.addEntry(density );

// Add the components to the Form

form.addComponent(networkComp );

form.addComponent(initConditionsComp );

// Set the Form ID info

form.setName(getName ());

form.setDescription(getDescription ());

form.setId(getId ());

form.setItemID(getId ());

Now we have a Form constructed for a typical FERN execution.

Fern Launcher

The Fern Launcher handles the actual execution of the FERN application.
The generator creates the FernLauncher as a subclass of ICE’s JobLauncher,
which provides a large array of features and functionality. As a subclass of
JobLauncher, the FernLauncher enables users to execute Fern locally, remotely,
or even through a Docker image. To do so, we just need to add a small amount
of code that customizes the ICE job launching capabilities for Fern.

The first bit of code to add to the FernLauncher specifies the name of the
actual Fern executable. In the setupItemInfo() method, set the execCommand
to the following:

execCommand = "${installDir}fern -exec";

7



This tells ICE that the Fern executable is called fern-exec, and to set the
overall execution command to it’s install path plus the executable name.

As for the Hosts information in the setupForm() method, let’s simply change
the install path to what we know it will be in the Docker container we will use -
/usr/bin. You can actually just change this on the Fern Launcher UI, but for
efficiency, let’s do it here.

addHost("localhost", "linux x86_64", "/usr/bin");

We also need to inform the JobLauncher what other files are involved in this
execution. To do that, the JobLauncher provides an addInputType() method.
Add the following to setupForm():

addInputType("Network File", "networkFile",

"Network File Description", ".inp");

addInputType("Rate File", "rateFile", "

Rate File Description", ".data");

And that should be it. The generator has taken care of everything else for
us. We are now ready to launch ICE with our Fern plugin, and use the Fern
Items we have just created.

Using the New Fern Items

Now, using these new Items is easy. Simply open the Run Configurations wizard,
and open Eclipse Applications to see ICE launch configurations for Mac, Linux,
and Windows. Select the launch configuration for your OS and open the Plug-
ins tab. Scroll down to the org.eclipse.ice.fern plugin and turn it on for
this launch configuration. Then click Apply and Run.

With a new ICE instance open, go to File > New > Other and select the
Create New Item Wizard.

8



After selecting the FernModel Item, you will be presented with the view in the
figure below.

Here you can modify the various defaults with the values you would like for a
given Fern simulation. Once done, simply save the Item and click Go on the
Export to INI Process. This will execute the process of creating a new INI Fern
input file for use with the Fern Launcher. You can check the result by opening
the fern output.ini file, as shown below.

9



Now you can similarly create a new Fern Launcher. After creating the
Launcher, you should see a view like below.

To configure a launch, simply set the correct input file, along with its dependent
network and rate files.

10



At this point, if you had Fern built on your local machine, or if you had it
built on some remote host, you could configure that in the Hosts table. ICE
would then execute Fern based on that input. Since, for the purposes of this
tutorial, we don’t have either of those configurations, we can use a third mode
of execution - launching our application via Docker. To do so, check the Launch
with Docker button, which will show a drop down widget populated with the list
of locally available Docker images. Select the eclipseice/fern image, and make
sure that the host table is configured to localhost and that the install path
is /usr/bin. Then simply launch Fern by clicking Go. This will pop up some
dialogs related to the connection of ICE to the Docker container, simply provide
a master password for Eclipse secure storage, and select yes on the known hosts
dialog.

After the execution you should see the results in the Console, as shown
below.

11


